Name: Fariah Ajech
IO: gOOOTH 294
Assignment V
* Guesbon 1: det T: V -> V be a L.T.
B = {b₁, b₂, b₃, b₃, b₄ i a basis of V such that.
T(b₁) = b₂, T(b₂) = b₃, T(b₃) = b₄, T(b₄) = -b₁ + 2b₅
T(b₁) = b₂, T(b₂) = b₃, T(b₃) = b₄, T(b₄) = -b₁ + 2b₅
1) M₈: M_B =
$$\begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

i) First let us compute INA_BI.
IM₈1 = $\begin{bmatrix} 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
thus T is invertible = > T⁻¹ exists.
and, T⁻¹ (b₂) = b₁
T⁻¹ (b₃) = b₂
T⁻¹ (b₄) = b₃
. b₄ = T⁻¹ (-b₁ + 2b₃) => b₄ = -T⁻¹(b₁) + 2T⁻¹(b₃)
=> T⁻¹(b₁) = 2b₂ - b₄

(ii) Find eigenvalues of T.
First we will get the eigenvalues of Me

$$C_{Mg}(a) = a^{4} - 2a^{2} + 1 \quad (since Mg is a companison matrix)$$

$$= (a^{2} - 1)^{2}$$

$$= (a - 1)^{2} (a + 1)^{2}$$
Huw eigenvalues of Mg are 1 and -1
Rence eigenvalues of T are 1 and -1
Now det us hind the eigen spaces corresponding to the eigenvalues

$$*E_{1}(M_{g}) : (I_{4} - M_{g}) \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \left[\begin{array}{c} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 - 2 \\ 0 & 0 - 1 & 1 \end{pmatrix} \\ \left[\begin{array}{c} 0 \\ 0 \\ -1 & 1 - 2 \\ 0 \end{array} \right] \begin{pmatrix} R_{1}R_{2} - R_{2} \\ R_{3}R_{4} - R_{4} \\ 0 \\ 0 \\ -1 & 1 - 2 \\ 0 \end{array} \right] \begin{pmatrix} 1 & 0 & 0 \\ 0 \\ R_{3}R_{4} - R_{4} \\ 0 \\ R_{2}R_{3} - R_{3} \\ \left[\begin{array}{c} 0 & 0 \\ 0 & 1 & -1 \\ 0 \\ 0 \\ -1 & 1 \\ 0 \end{array} \right] \\ \left[\begin{array}{c} R_{2}R_{3} - R_{3} \\ R_{3}R_{4} - R_{4} \\ 0 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ -1 \\ 1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ -$$

*
$$E_{+1}(M_{B})$$
: $(-I_{H} - M_{B})\begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ -1 \end{pmatrix}$
 $\begin{bmatrix} -1 & 0 & 0 & | & 0 \\ 0 & -1 & -1 & -2 \\ 0 & 0 & -1 & -1 \end{pmatrix} = \begin{bmatrix} -1 & 0 & 0 & | & 0 \\ 0 & -1 & 0 & -1 & 0 \\ 0 & -1 & -1 & -2 \\ 0 & 0 & -1 & -1 \end{pmatrix} = \begin{bmatrix} -1 & 0 & 0 & | & 0 \\ 0 & -1 & -1 & -2 \\ 0 & 0 & -1 & -1 \end{pmatrix} = \begin{bmatrix} -1 & 0 & 0 & | & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & -1 & -1 \end{pmatrix} = \begin{bmatrix} -1 & 0 & 0 & 1 & | & 0 \\ 0 & -1 & -1 & | & 0 \\ 0 & 0 & -1 & -1 & 0 \end{bmatrix}$
 $= R_{1}, R_{3} - R_{3}$
 $= R_{1}, R_{3} - R_{4}$
 $= R_{1}, R_{3} - R_{4}$
 $= Span \left\{ (1_{2}, -1_{2}, -1_{3}, 1) \right\}$
hence $E_{-1}(T) = Span \left\{ (b_{1} - b_{2} - b_{3} + b_{4}) \right\}$.
 $iv) It is obvious that M_{B}^{-1} is the matrix presentation of T^{-1}
 $= M_{B}^{-1} (1 + R_{2})$
 $= Recall that if λ is an eigenvalue of M_{B} then $\frac{1}{\lambda}$ is an eigenvalue
 $ef M_{B}^{-1} (1 + C)$
 M_{0} reover $E_{-1}(T) = Span \left\{ -b_{1} - b_{2} + b_{3} + b_{4} \right\}$
 $= L_{-1}(T) = E_{-1}(T) = Span \left\{ b_{1} - b_{2} - b_{3} + b_{4} \right\}$$$

V). We know that
$$C_{T}(\alpha) = C_{HB}(\alpha)$$

thus $C_{T}(\alpha) = (\alpha - 1)^{2} (\alpha + 1)^{2}$
. we can notice that MB is a companion matrix
thus $M_{HB}(\alpha) = C_{HB}(\alpha) = (\alpha - 1)^{2} (\alpha + 1)^{2}$
and $m_{T}(\alpha) = M_{HB}(\alpha) = (\alpha - 1)^{2} (\alpha + 1)^{2}$
vi) since $m_{T}(\alpha) = (\alpha - 1)^{2} (\alpha + 1)^{2} \neq (\alpha - 1) (\alpha + 1)$
we can conclude that T is not diagonalizable.
vii) $M_{B}^{-1} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \end{pmatrix}$
thus $C_{HB}^{-1}(\alpha) = [\alpha - 1 & 0] + 1 \begin{bmatrix} -2 & -1 & 0 \\ 0 & \alpha & -1 \\ 1 & 0 & 0 & \alpha \end{bmatrix}$
 $= \alpha \begin{bmatrix} \alpha - 1 & 0 \\ 0 & \alpha & -1 \\ 0 & 0 & \alpha \end{bmatrix} + 1 \begin{bmatrix} -2 & -1 & 0 \\ 0 & \alpha & -1 \\ 1 & 0 & \alpha \end{bmatrix}$
 $= \alpha [\alpha (\alpha^{2})] + 1 [E - 2(\alpha^{2}) + 1(1)]$
 $= \alpha^{4} - 2 \alpha^{2} + 1$
thus $C_{T-1}(\alpha) = C_{T}(\alpha) = \alpha^{4} - 2\alpha^{2} + 1 = (\alpha - 1)^{2}(\alpha + 1)^{2}$
. we know that $T^{-1}\alpha$ not diagonalizable since T α not
diagonalizable thus $m_{T-1}(\alpha) \neq (\alpha - 1)(\alpha + 1)$

>

but the matrix presentation of T⁻¹ with respect to some
basis is not a comparison matrix.
Characteristic polynomial of TA(-1) = Minimum polynomial of TA(-1). See the notes I WILL
post (no points are taken off since there is a missing material that I did not provide)
VIII Let F: V
$$\longrightarrow$$
 V st F(v) = $-T^{H}(v) + 2T^{2}(v)$ V V EV
we know that $C_{T}(w) |_{u=T} = 0$ function
 $H_{WW} = T^{H} - 2T^{2} + I = 0$ where I is the Identities map on V
 $H_{WW} = T^{H} + 2T^{2} - I = 0$
 $\implies -T^{H} + 2T^{2} - I = 0$
 $\implies -T^{H}(v) + 2T^{2}(v) - I(v) = 0$
 $\implies F(v) = V$ for every V E V
(in) Recall that -1 is an eigenvalue of I T
Hen $T(v) = -V$
NOT CORRECT
F is not 0
 $T_{+} I = 0$
 $F = 0$ fundom
 $F = 0$ fundom

thus F'is doesn't exist.

Note that we conclude that the characteristic polynomial of T + I has 0-constant (note that multiplication of all eigenvalues of T + I (with repetition) = det(Matrix presentation of T + I with respect to some basis of V) = + - constant term of the characteristic polynomial of T + I.

* Question 2:

Let T: V-, V such that IN(V)=5

we know that the degree of the characteristic polynomial is equal to the dimession of V dimension of V thus C_T(d) has a degree 5. So C_T(d) has is a polynomial of odd degree and we know that every polynomial of odd degree has must have at least one real root. Thus T must have at least one real eigenvalue say d, and a corresponding eigenfunction $v_{e_{i}}^{e_{i}v}v\neq0$, such that T(v) = dV * Question 3:

since A is a companion matrix then $C_A(d) = M_A(d) = d^3 - 3d + 2$ = $(d-1)^2 (d+2)$

and since $M_{A}(d) \neq (d-1)(d+2)$ thus A is not diagonalizable.

therefore A is 3x3 matrix, such that CA (d)= MA(d) and A is not diagonalizable. * Question 4:

det
$$A = \begin{pmatrix} 0 & 0 & 6 \\ 1 & 0 & -11 \\ 0 & 1 & 6 \end{pmatrix}$$

Since A is a companyion matrix we have: $C_A(d) = M_A(d) = d^3 - 6d^2 + 11d - 6$ = (d-1)(d-2)(d-3)

and A is diagonalizable. since

thus A is a 3x3 matrix, such that $C_{A}(\alpha) = M_{A}(\alpha)$ and A is diagonalizable.