Name: Farah Ajeeb
ID:900077394

Assignment V

* Question 1: Let $T . V \rightarrow V$ be a $L . T$.

$$
\begin{aligned}
& \text { Let } T V \rightarrow V \text { be a } L . T \\
& B=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\} \text { is a basis of } V \text { such that: } \\
& T\left(b_{3}\right)=b_{4}, T\left(b_{4}\right)=-b_{1}+2 b_{3}
\end{aligned}
$$

$$
\begin{aligned}
& B=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\} \text { is a basis } \\
& T\left(b_{1}\right)=b_{2}, T\left(b_{2}\right)=b_{3}, T\left(b_{3}\right)=b_{4}, T\left(b_{4}\right)=-b_{1}+2 b_{3}
\end{aligned}
$$

i) $M_{B}: \quad M_{B}=\left[\begin{array}{cccc}T\left(b_{1}\right) & T\left(b_{i}\right) & T\left(b_{s}\right) & T\left(b_{a}\right) \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0\end{array}\right]$
ii) First let us compute $\left|M_{B}\right|$:

$$
\left|M_{B}\right|=\left|\begin{array}{cccc}
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 0
\end{array}\right|=1 \neq 0
$$

thus T is invertible $\Rightarrow T^{-1}$ exists.
and, $T^{-1}\left(b_{2}\right)=b_{1}$

$$
\left.\begin{array}{l}
T^{-1}\left(b_{3}\right)=b_{2} \\
\cdot T^{-1}\left(b_{4}\right)=b_{3} \\
\cdot b_{4}=T^{-1}\left(-b_{1}+2 b_{3}\right)
\end{array} \quad \Rightarrow b_{4}=-T^{-1}\left(b_{1}\right)+2 T^{-1}\left(b_{3}\right)\right)
$$

iii) Find eigenvalues of T :

First we will get the eigenvalues of M_{B}.

$$
\begin{aligned}
C_{M_{B}}(a) & =a^{4}-2 a^{2}+1 \quad \text { (since } M_{B} \text { is a companion matrix) } \\
& =\left(a^{2}-1\right)^{2}
\end{aligned}
$$

$$
=(a-1)^{2}(a+1)^{2}
$$

thus eigen values of M_{B} are 1 and -1
hence eigen values of T are 1 and -1
. Now let us find the eigen spaces corres ponding to the eigenvalues.

Thus $x_{1}=-x_{4}, x_{2}=-x_{4}, x_{3}=x_{4}$

$$
\text { Thus } \left.X_{1}=-X_{4}, X_{2}=-M_{8}\right)=\left\{\left(-X_{4},-X_{4}, X_{4}, X_{4}\right) \mid X_{4} \in \mathbb{R}\right\}
$$

$$
=\operatorname{span}\{(-1,-1,1,1)\}
$$

Hence $E_{1}(T)=\operatorname{sRan}\left\{\left(-b_{1}-b_{2}+b_{3}+b_{4}\right)\right\}$

$$
\begin{aligned}
& \text { * } E_{1}\left(M_{B}\right): \quad\left(I_{4}-M_{B}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) \\
& \Rightarrow\left[\begin{array}{cccc|c}
1 & 0 & 0 & 1 & 0 \\
-1 & 1 & 0 & 0 & 0 \\
0 & -1 & 1 & -2 & 0 \\
0 & 0 & -1 & 1 & 0
\end{array}\right] \xrightarrow{R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{cccc|c}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & -1 & 1 & -2 & 0 \\
0 & 0 & -1 & 1 & 0
\end{array}\right] \\
& {\left[\begin{array}{cccc|c}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \quad \ll R_{3}+R_{4} \rightarrow R_{4}\left[\begin{array}{cccc|c}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & -1 & 1 & 0
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& * E_{-1}\left(M_{B}\right): \\
& {\left[\begin{array}{ccccc}
-1 & 0 & 0 & 1 & 0 \\
-1 & -1 & 0 & 0 & 0 \\
0 & -1 & -1 & -2 & \left.I_{4}-M_{B}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right) \\
0 & 0 & -1 & -1 & 0
\end{array}\right] \stackrel{\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)}{-R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{cccc:c}
-1 & 0 & 0 & 1 & 0 \\
0 & -1 & 0 & -1 & 0 \\
0 & -1 & -1 & -2 & 0 \\
0 & 0 & -1 & -1 & 0
\end{array}\right]} \\
& {\left[\begin{array}{cccc|c}
-1 & 0 & 0 & 1 & 0 \\
0 & -1 & 0 & -1 & 0 \\
0 & 0 & -1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

thus $X_{1}=X_{4}, X_{2}=-X_{4}, X_{3}=-X_{4}$
So $E_{-1}\left(M_{B}\right)=\left\{\left(x_{4},-x_{4},-x_{4}, x_{4}\right) \mid x_{4} \in \mathbb{R}\right\}$

$$
=\operatorname{span}\{(1,-1,-1,1)\}
$$

hence $E_{-1}(T)=\operatorname{span}\left\{\left(b_{1}-b_{2}-b_{3}+b_{4}\right)\right\}$.
iv) It is obvious that M_{B}^{-1} is the matrix presentation of T^{-1} with respect to the basis B.
Recall that if λ is an eigen value of M_{B} then $\frac{1}{\lambda}$ is an eigenvalue of $M_{B}^{-1} \quad(\lambda \neq 0)$
Moreover: $\quad E_{\lambda}\left(M_{B}\right)=E_{1_{\lambda}}\left(M_{B}^{-1}\right)$
thus eigenvalues of T^{-1} are 1 and -1
and $E_{1}\left(T^{-1}\right)=E_{1}(T)=\operatorname{SRan}\left\{-b_{1}-b_{2}+b_{3}+b_{4}\right\}$

$$
E_{-1}\left(T^{-1}\right)=E_{-1}(T)=\operatorname{sRan}\left\{b_{1}-b_{2}-b_{3}+b_{4}\right\}
$$

V). We know that $C_{T}(\alpha)=C_{M_{B}}(\alpha)$ thus $C_{T}(\alpha)=(\alpha-1)^{2}(\alpha+1)^{2}$

- we can notice that M_{B} is a companion matrix thus $m_{M_{B}}(\alpha)=C_{M_{B}}(\alpha)=(\alpha-1)^{2}(\alpha+1)^{2}$ and $m_{T}(\alpha)=m_{M_{B}}(\alpha)=(\alpha-1)^{2}(\alpha+1)^{2}$
vi) Since $m_{T}(\alpha)=(\alpha-1)^{2}(\alpha+1)^{2} \neq(\alpha-1)(\alpha+1)$ we can conclude that T is not diagonalizable.
vii) $M_{B}^{-1}=\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0\end{array}\right)$
thus $C_{M_{B}^{-1}}(\alpha)=\left|\alpha I_{4}-M_{B}^{-1}\right|=\left|\begin{array}{cccc}\alpha & -1 & 0 & 0 \\ -2 & \alpha & -1 & 0 \\ 0 & 0 & \alpha & -1 \\ 1 & 0 & 0 & \alpha\end{array}\right|$

$$
\begin{aligned}
& =\alpha\left|\begin{array}{ccc}
\alpha & -1 & 0 \\
0 & \alpha & -1 \\
0 & 0 & \alpha
\end{array}\right|+1\left|\begin{array}{ccc}
-2 & -1 & 0 \\
0 & \alpha & -1 \\
1 & 0 & \alpha
\end{array}\right| \\
& =\alpha\left[\alpha\left(\alpha^{2}\right)\right]+1\left[-2\left(\alpha^{2}\right)+1(1)\right] \\
& =\alpha^{4}-2 \alpha^{2}+1
\end{aligned}
$$

thus $C_{T-1}(\alpha)=C_{T}(\alpha)=\alpha^{4}-2 \alpha^{2}+1=(\alpha-1)^{2}(\alpha+1)^{2}$

- we know that T^{-1} is not diagonalizable since T is not diagonalizable thus $m_{T-1}(\alpha) \neq(\alpha-1)(\alpha+1)$
but the matrix presentation of T^{-1} with respect to some basis is not a companion matrix.
Characteristic polynomial of $\mathrm{T}^{\wedge}\{-1\}=$ Minimum polynomial of $\mathrm{T}^{\wedge}\{-1\}$. See the notes I WILL post (no points are taken off since there is a missing material that I did not provide)
Viii) Let $F: V \rightarrow V$ sit $F(v)=-T^{4}(v)+2 T^{2}(v) \quad \forall v \in V$ we know that $\left.C_{T}(\alpha)\right|_{\alpha=T}=0$ - function
thus $T^{4}-2 T^{2}+I=0$ where I is the identity map on V

$$
\begin{aligned}
& \Leftrightarrow-\underbrace{-T^{4}+2 T^{2}-I=0}_{F(v)-v=0} \\
& \Leftrightarrow \underbrace{-T^{4}(v)+2 T^{2}(v)}-I(v)=0 \\
& \Leftrightarrow{ }_{F}-v=0
\end{aligned}
$$

$\Rightarrow F(v)=V$ for every $v \in V$
(ix) Recall that -1 is an eigenvalue of T

then	$T(V)=-V$
NOT CORRECT F is not 0 $T=-I$ $1 / 4$ $T+I=0$ $F=0$. function and It is obvious that F	

be careful here. $\mathrm{T}(\mathrm{v})=-\mathrm{v}$ only for v in $\mathrm{E} _\{-1\}(\mathrm{T})$ not for all v in V . What you can show here that 0 is an eigenvalue of $T+I$. Hence $Z(T+I)$ not equal $\{0\}$. Thus $T+I$ is not $1-1$ and hence $T+I$ is not invertible. To show that 0 is an eigenvalue of $T+I$. Let v be a nonzero element of $\mathrm{E}_{-}\{-1\}(\mathrm{T})$. Then $(\mathrm{T}+\mathrm{I})(\mathrm{v})=\mathrm{T}(\mathrm{v})+$ $I(v)=-v+v=0 _v$.
Note that we conclude that the characteristic polynomial of $\mathrm{T}+1$ has 0 -constant (note that multiplication of all eigenvalues of $\mathrm{T}+\mathrm{I}$ (with repetition $)=\operatorname{det}($ Matrix presentation of $T+1$ with respect to some basis of V) $=+$ constant term of the characteristic polynomial of $T+1$.

* Question 2:

Let $T: V \rightarrow V$ such that $I N(V)=5$

- we know that the degree of the characteristic polynomial is equal to the dimesion of V thus $C_{T}(\alpha)$ has a degree 5.

So $C_{T}(\alpha)$ has is a polynomial of odd degree and we know that every polynomial of odd degree has must have at least one real root.

Thus T must have at least one real eigenvalue say α. and a corresponding eigen function $v^{\in V}, V \neq 0$, such that $T(v)=\alpha v$ eigenvector or
eigen-element

* Question 3:

$$
\operatorname{det} A=\left(\begin{array}{ccc}
0 & 0 & -2 \\
1 & 0 & 3 \\
0 & 1 & 0
\end{array}\right)
$$

since A is a companion matrix
then $C_{A}(\alpha)=m_{A}(\alpha)=\alpha^{3}-3 \alpha+2$

$$
=(\alpha-1)^{2}(\alpha+2)
$$

and since $m_{A}(\alpha) \neq(\alpha-1)(\alpha+2)$ thus A is not diagonalizable
therefore A is 3×3 matrix, such that $C_{A}(\alpha)=m_{A}(\alpha)$ and A is not diagonalizable.

* Question 4:
$\operatorname{Let} A=\left(\begin{array}{ccc}0 & 0 & 6 \\ 1 & 0 & -11 \\ 0 & 1 & 6\end{array}\right)$
Since A is a companion matrix we have:

$$
\begin{aligned}
C_{A}(\alpha)=m_{A}(\alpha) & =\alpha^{3}-6 \alpha^{2}+11 \alpha-6 \\
& =(\alpha-1)(\alpha-2)(\alpha-3)
\end{aligned}
$$

and A is diagonalizable
thus A is a 3×3 matrix, such that $C_{A}(\alpha)=m_{A}(\alpha)$ and A is diagonalizable.

